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1. In a previous paper [ 1] consideration was given to plane travelling
wave systems associated with quasi-linear equations such as

Ou;
Qijk (U1, -+ Um) 5;,;’: = G 7 k=1, ..,m) (1.1)

We call the travelling wave of rank r a solution of system (1.1) if
for it the m — r functional dependencies are satisfied:

Pa(tye ooy 8m) =0 (@=1,..,m—r) (1.2)

In the given classification the travelling wave of rank 1 coincides
with the plane travelling wave [11].

In the present work are considered travelling waves of rank m ~ 1. The
following algorism (formal treatment) is suggested to find them.
Let
Um = ¢ (Ug, +ov , Um—g) (1.3)
be the functional dependence determining the travelling wave of rank
mn- l.

From equation (1.3) there follows that Ba(Zy, ...y Zm), a= 1, ..., m
functions have common level lines. let these lines satisfy the differential
equation

; d
?f'_ _ _.a.:..”_‘ (i=1,...,m—1) (1.4)

where A; represents any of several functions of x,, ..., z,. For any
function f(ul, «ee, u,) we must have

o+ Bigl =0 k=1,..,.m—1) (1.5
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The relations (1.3), (1.5) allow us to eliminate in system {1.1) the
function u, and the derivatives of x .

Substituting (1.3), (1.5) into (1.1), we obtain the system in which

ou, r=1,...,m
Liz‘A“B 6‘_1'_6 =0 (a,;?a:—:i,...,m——i) (1.6)
where )
Airxs = Qiap — aiamAﬁ - AimpPx — aimmﬁPocAay 'v?c:'—"g;' (i -7)
%

System (1.6) represents an overdetermined system into whose coeffi-
cients enters as a parameter the variable x_ . When expressing the condi-
tion that ?quation fl,ﬁ) apply to any x_ it is necessary to add to (1.6)
the following equation:

0L;[0xm =0 (1.8)
Noting that relations
oL,
A, 5z, =0 Y=1 0., m—1) (1.9)

follow from (1.6) it is seen that equation (1.8) may be written in the
form

SL; =0 (1.10)

b= A, 1.11

O—-—-a“x—"l- Sy x=141..,m—1 ( )

m Y

Taking into account (1.5) we obtain the relation

L u, A, du,
Accordingly, equation (1.10) takes the following form
Aiag® 222 = (34105 — Aiwy 28) 2 _ 1.43
iaf 8—2:5:( iaf — ia?(g;)’é’;‘; = ( . )
Further consequences
oL
T = 0 (s=2,..) (1.14)
lead to the equation
du
: ( ) ,_E p——t X,
Amﬁsbxp (1.19)
where
( 34, (5D w—a)aAB ;
'Aiof(j 8) = ')Aizﬁ - Ai;.{ 53—9: (1.16)

If A, 1is regarded as a direct function of Xyy veer Xy then conditions
(1.15) represent quasi-linear equations for u, . If A),appear as functions

of
ul,-..,um._.j, xl,--.,mm,

then equation (1.5) will be of power s + 1 with regard to derivatives
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aua/ax. . Particularly when A, are functions U Y then express-
ions A, p'° 8ua/3x will be in the form of powers s + 1 with regard to
the derivatives aualgﬁq.

A further problem appears to be the investigation of the combatibility
of system (1.15) where one can formally assume

Aias(o) == Ai’:ﬁ

In this manner, system (1.15) will include equations (1.6) and all
consequences from them and determine the travelling wave.

Depending on the degree of arbitrariness which we will require from
the solution 0y = ; (21, o s Tm)s
we will obtain various specific limitations on ¢, Al; and thereby various
systems (1.15).

The arbitrariness of the solution will materially depend on the rank
of the systems (1.15). By this we mean the number of really independent
equations in system (1.15).

An analogous treatment (algorism) may be suggested in the case of
travelling waves of arbitrary rank.

2. We consider the gas dynamics equation of a polytropic gas:

du du; ap a%")
o(G + kax)+5;c—i=o (=2 (2.1)
—F uk 4‘ P 5;; =0 (2.2)
In the adiabatic case, when a2 = a?(s) = const, considering the vari-
ables u;, 0 = [a2/{y — 1)1p?¥"1, we obtain
du, du,

; du,
~5~t~+uk(§;k“+$lf=0, ;97'+uka;;+(Y—‘1)65;1c““"0 (2.3

In the isothermal case p = azp, a® = RT = const, y = 1, 6 = Inp and
equation (2.3) assumes the form

du; 38 o8 | Buy
2__‘ oY 94 Tk 2
Bt +u kdx +a =0, at + oz, + 8z, 0 (2.4)

The systems (2.3), (2.4) belong to type (1.1), therefore to them may
be applied the formal treatment (algorism) of the determination of
travelling waves.

We consider a travelling wave of rank 2 of plane motion (m = 3) of a
polytropic gas.
In our case 6 plays the role of variable u,, and ¢t that of variable

xy; system (1.6) takes the form
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(= By 4 9) 8 4 (2 — D)) SR+ 5ot + 0 52 =0

oy
O%+wl%+ (— &) uuz”{“(uz"*Ao"‘%)::--——U (2.5)
=)o + o0 (a1 — A 52 + 20 (s — &) ‘9“; 2o (1) — Ay) G2+
Uy — Do+ 2alta— Bl 92 =0

Let us require that with the function ¢ (ul, u, } fixed the travelling
wave possesses arbitrariness of two functions of one argument. For this
it is necessary that the rank of the system (2.5) be equal to 2. From
this condition we arrive at two possibilities:

(a) On = Ay — Uy = Ay (2=1,2)
(2.6)
(b) a191 + a2, =0
(@’ +a) (ol + ol —(y— Dol —(y—Delel+e)=0 (2.7

We limit ourselves to case {a) which appears basic. From (2.6) it
follows that the lines of level are straight and

2., =ttt E (2.8)

kY

Ay =

System (2.5) is reduced to two equations:

au‘a i Yy
LF=Ama%;z0 (i,a 3=1,2) (2.9)
where Ay = Apge =0, Ape=—4jn =1 (2.10)
Apg= (Y — 1) ohup — 2y (2,8=1,2)

(3, — is the Kronecker symbol)

Equation L, = 0 means that the motion is a potential motion. Conditions
8L, =0 yleld
A A du, Ou, A A 9.4
00v0 5z, Oz, 0, e fu B, (241

Or on writing d¢r/dx, = u, where ¢/ is the potential function, we have

AimﬂAWq’qu‘uﬁ =0 (212)
Conditions 52Li = 0 have the form
AiapAvoBooPaypedon = 0 (2.13)

It is easy to see that all conditions

#Ly=0 (2.14)
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are fulfilled identically.

Let us require that equation 8L, = 0 follows from (2.9). For this it
is necessary and sufficient that the quadratic form 8L, be divisible into
a linear form L,. Using equation (2.9), condition 8L, = 0 may be reduced
to the form

KL(9) =0 (2.15)

where
K= 4’114‘22 o 4’122 (2-16)
L(9) = (pu+ 1 Ily— 1o —9"1 + 20190912 + [(Y—Do—:’l (P + 1) =0
(2.17)

The case K = 0, as is easy to see, leads to the plane travelling wave
of rank 1. In this manner, we obtain for ¢ a quasi-linear equation of the
second order:

L(g)=0 (2.18)

Condition 521..2 = 0 with consideration of equations L2 = 0, 6L2 =
takes the form

KKiL, =0 (Ky== Blgg — Aga?) (2.19)

It follows at once from this that conditions BSLZ =0, s> 1do not
give anything new and equation (2.18) seems a sufficient condition in
order that solution u,(x,, x,,t) possesses arbitrariness of two functions
of one argument.

The motion corresponding to the given solution ¢ (u,, u,) of equation
(2.18) may be obtained in the following manner. Let
Uy =Uy(2y, 7z) Ug= U, (21, )
be the solution of system (2.9), A(U;, U,;) the function corresponding
to ¢ (Uy, UZ)‘
let us draw through every point X100 %90 of the surface t = t; a ray

Ty — Ty — Ty — %20 I s (2 20)
Ay {Uy (%10, o), Uz (210, T20)] Ay WUy (10, 20), Uz (%30, Z20)} 1 ’

Along each ray, going through the point x,4, %,,, t;, we will assume

Ue (T, Toy 1) == U (Tyq, Tag) (2.21)
In addition to this, everywhere 0 = ¢ (Ul’ U2 ). Then the functions
Uy (2, Zsy 1), 02y, Zo, 1) = o [1y (T4, Tz, 1), Us (Zy, Zay L}]

determine the desired travelling wave. As a consequence of the assumption
K # 0 for equation (2.9), one can apply the holographic transformation to
the equations (2.9)
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az 1 duy_,
a?‘“(”'i +B1”{ax3 . (2.22)

Since the motion is potential, then
awl/aurz = 5223 / aul
and one can introduce the potential function X(ul, uz) such that

Z{;"- = &y (g, Us) (2.23)
It is clear that X(u , u,) satisfies equation
i 4 0°X
(’*{-—-1}:9-—31}(3 -+ 2 0192 g + (y—l)@—@f]——sz (2.24)

In this manner, the followtng theorem is true:

Theorem 1. If ¢ (u,, u,) satisfies the equation (2.18), then the cor-
responding travelllng wave possesses arbitrariness of two functions of
one argument and is expressed by means of formulae (2.20) to (2.23)
through an integral of X(u,, u,) of equation (2.24).

3. Let us call conical flow the travelling wave of rank 2 in which all
the straight level lines pass through a single point Xi00 %pq0 tos of the
phase space Xyr %y, t In other words, the congruence of straight level
lines turns out to be conical. Let us prove that the resulting travelling
waves do not appear, generally speaking, as conical.

The conical congruence has the following infinitesimal characteristic:
any straight congruence is intersected by any straight line which goes
through its infinitesimal neighborhood. Expressing this fact we obtain
the following conditions of conical flow:

98, _ oA, 98, _ oA,

Al ra T = oo (3.1)
From this follow the equations:
é d
An 3 ul -+ A:zég—: =
A "’“1 App 222 = 3.2
12 57 *F 2, = (3.2)
6 é
Au 5 ul Azza—:: =0

In order that the condltlons for being conical be satisfied for any
travelling waves corresponding to the given function ¢ (u,, u,), it is
necessary and sufficient that equations (3.2) follow from equation (2.9)
i.e., that the rank of matrix |M| be equal to 2, where

l 0 1 —1 0 "
1
1 Y—1)<P—<91 — 0P — @ (y—1)¢— @2
(M| = 0 Ay 0
| 0 An 0 Ay,
3 Agp 0 0 — Dyy

This is only possible for Ahﬂ = 0, a,8 = 1,2. From this, taking into
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account {2.6), we obtain
o + 1 =0, o =0, Ga+1=0 (3-3)
D =, + Ciy + Colly — ‘%‘ (us® + u5?), A=co+cuy+ e, (3.4)

In the general case ¢ does not satisfy conditions (3.3) and the condi-
tions for being conical (3.2) represent substantially new equations. In
order that conical flow be not trivial it is necessary to fulfil the con-
dition; rank of M| = 3.

It 1s easy to see that all the values of the fourth order matrix ¥
will be equal to zero by virtue of conditions (2.18).

In this manner, for any solution ¢ of equation L{¢) = 0, except (3.4),
the matrix of coefficients of equation (2.9), (3.2) has the rank 3. From
this we have

a "
;i = (— 1) *tPAs a3 £ (@ B=12) (3-5)
s
where p is a certain multiplying factor.

Applying the hodographic transformation to (3.5), we obtain

ox, aa, .
e, = M, (2,8=1,2) (3.6)

From this follows at once u = const = ¢, and
Tz ey -y (@ =1, 2), X =cA +cyuy + caty + 03 (3.7)

It is easy to see that equations (2.18), (2.24) are satisfied. In
this manner, the following theorem 1is proved,

Theorem 2. In the case when
3= ¢, + ¢ty + Calla — 3 (8% + u5°),
all travelling waves are conical flows. For the remaining solutions
¢ of L{¢) = 0 the motions, generally speaking, do not turn out to be
conical, but for any ¢ in the class of corresponding travelling waves
there exists a completely determinate conical flow.

A. Let us apply the results ohtained to the solution of the problem
of gas motion bounded by two surfaces. let the space x,, x,, x; be an
infinite volume of stagnant gas, enclosed at the instant where ¢ < 0
inside the corner between planes x, = 0, x, = 0. At the instant ¢t = 0
the planes begin to move according to the law:

= [ {0 (0= 1, 2} (4.1
Tt is clear that the motion will be two Jimensional, not depending on
the coordinate Xy In the following we will tdencify plane Xy = 0 with
the plane of the diagram, planes x, = const.wi!l accordingly be
represented by the coordinate lines.

“pon first examination we will assume function f (t) to be such that
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until the instant of time T there will be no strong discontinuities in
the motion. Then, at a certain instant of time ¢t < T in the plane Xy, X

2
we will have the following picture of the motion (Fig.l).

In region I we have stagnant gas
wy == uy =0, 0=0y=0c?/(yvy—1) (4.2)

In region II (vertical strip above AC) we have one-dimensional motion,
not depending on x, and proving to be a plane travelling wave (wave of
rank 1), i.e., a Riemann wave, to which the well-known relationships
apply:

. 5
uy =0, uy = gz — U4 ¢) ), ML T T T G (4.3)

Line y., dividing region II from region I will be straight x, = cyt.
In region III (horizontal strip to the right of BC) we also have one
dimensional motion, not depending on X This also is a Riemann wave:
2 2

u; =0, Uy = go [2a— (U2 4 ¢) ¢f, ue_Y_1C:—Y—1CU (4.4)

The line y,, the boundary between regions I and TII, is straight.
x, = c4t. In region IV we will look for motion of the type of travelling
wave of rank 2.

Since for any function ¢ (u,, ”2) that is the solution of equation
L(¢#) = 0, the travelling wave of rank 2 must possess two functional
arbitrarinesses then we can

EATALY) |
i
4 Zf00)
z 17
g ! 7 r i I
\\~-_+ﬂ______§_ A _--_Jﬁ_______é_
L' I o
\ Zy4,0t) ’ ; 1,08
[] A
Fig. 1. Fig., 2.

satisfy the boundary condition u; = fi(t), possessing that same arbit-
rariness.

The condition which fixes the function ¢ (u,, u,) is the condition of
uninterrupted connection (or continuity) of the solution in region IV to
the solutions in regions II and IIT1.

It is easy to see that they have the fom

1 v —1 2 i ! 12
9 (ug, 0) = .,__1['{_‘2_ uy + Co] . 2 (0, uz)‘:.,—_T[l uy + "oj 4.5)

G
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In this manner, ¢ must be identified with that solution of equation
L(¢) = 0 which satisfies the boundary conditions (4.5). We have the
problem of Goursat for quasi-linear equations of the second order.

5. Let us consider isothermal gases. Then
v=1, 0 =Inp, a® = RT = const.

For simplicity, we assume a® = 1. All the results of preceding problems
are automatically transferred to the isothermal gases.

The boundary problem of the preceding section has the following form:

Ligy=(—o){eu-+ 1)+ 291002 + {1 — @18 (P + 1} = 0 5.1)
@ (13, 0) = uy - Oy, o (0, ux) =uz+ 6, (5.2)

It 1s easy to see that the solution of this problem is the function
¢ =uy + uz + 6 (5.3)

Function X(u,, u,) must satisfy equation

X 02X 02X R
(A — 9% Tyt + 2?1@257‘5;; +(1—9? Jui = 0 (5.4)
which in the case of (5.3) takes the form:
»x .
0u16u2 - (0»3}

From this follows at once x, = xi(“;"t)' The picture of the motion
assumes the form shown in Fig.2.

Sections AC and BC represent continuations of lines y, and y,,
respectively. In this manner, regions I to IV are bounded by mutually-
orthogonal straight lines.

The equations of the straight lines y, and y, respectively are

ry =1, Iy =1 {5.6)
Further we have in region I

uy == Uy = (), (3.7}
in region 11 ug = 0, uy = gy (&g, t) (5.8
in region III uy =0, Uy = g (g, £) (5.9
in region IV uy = gy (21, 1), uy = ga (Tg, 1) (5.10)
in region I to IV 6 =u; + ug + 0 (5.11)

Function g,(x;, t) is the fundamental solution of equation
u; = F [2; — (u + Dt} (5.12)

where function F.(t) is related to f,(t) by the equation

f/(0) = Flf; @)= {f;’+ 11 5.13)

Formulae (5.6) to (5.13) give a complete solution of the problem under
consideration of the motion of a isothermal gas enclosed inside the
straight corner in the assumed absence of strong discontinuities. Straight
lines y,, v, appear to be lines of weak discontinuities (discontinuities
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of derivatives aui/(?xj 8ui/¢3‘t, ae/axj, 96/3¢).

Of course, there may still be other discontinuities besides in the
regions II, IIT and IV.

For instance when
fi)=¢; <0 {5.14)

™
Z6t
[ ]

a
£y

T

\—+-—...-JL.........__

L)

I S e

Fig., 3.
The picture of the motion assumes the form shown in Fig.3.
In the regions I, Ia, Ib, Ic we have a motion with constant parameters:

( u =0 ug =0; (15) u =0, Uy ==¢Cp
(la) uy = ¢y, Ug = 0; (IC) u; = ¢y, Uy == Cy (515)

In the regions II, Ila, III, IIla we have plane travelling waves
(Riemann waves):

(II) ul——«z,/t--i, u2=:0
(la) up=myft —1, Uy =€
(III) '41‘—“0, u2=z'2/t--1 (516)
(I11a) U = ¢y, Uy = %o/t — 1
In region IV we have a travelling (conical) wave of rank 2:
uy =/t — 4, ug == w3t — 1 5.17)
7
z 7
t %
¥ y/4
Fig. 4.

Conditions in all regions are governed by the relation (5.11). The
lines y;, I'; dividing the mentioned regions move according to the law
() # = e, (F1) Ty =yt
(ya) zy=(c1 + 1)1, Ts)  @m=(ca-t 1) (5.18)
{(vs) =, {I's) X = 1
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Generally the motion is conical (self similar or centered wavel.

6. let us now consider motions in which strong discontinuities may
occur, confining ourselves to the case of an isothermal gas.

The Hugoniot conditions for an isothermal gas with a? = 1 have the

form:
1
a = ug = Mo - gy B) — By = 1n M2 My = Doy (6.1)

Here the index (0) corresponds to conditions shead of the front, the
index {1) refers to conditions behind the shock waves., It is easy to see
that the configuration of two steady and compatible shock fronts move
with constant speed through a gas at rest in mutually orthogonal direct-
ions {Fig.4).

If the speed of front y, equalsD
D, then we have by virtue of (6.1)

; and the speed of front y, equals

1

Wy = Dy — DT' Uy = 0, 6 = 60+ In [)12 i.n region 11
1 . .
g =0, e 9 = 0y 4 In D2 in region III (6.2)
1 1 . .
wy == [l i Uy = — =+ Dy, 8 =28, In D2+ In Ik in region IV

The above relations take into account the compatibility conditions in
all shock fronts.

Steady and compatible also is the configuration of shock wave y., and
the Riemann travelling waves (yz, y,) in the case where they travel 1in
mutually orthogonal directions. (Fig.5).

The motion in that case is characterized in the following manner:

7 (1 wy == U, Wy = 1), 0 =0, 6.3
¥/ ‘2“,”35 1
.| B__&t ogn w=De—y. w=0, B = 0 -+ In 12
L 5, vy
- 2 e {{f{} Wy == £, ugz";:"—-i, @:33—?—:‘»&3

—_I AR 2 '

i T
Fig. 5. (1) Uy :])-—--jj, h‘g:“‘;:" e b, O == uy - I DO,

The conditions of compatibility are fulfilled on all boundaries. The
motion considered in Figs. 4 and 5 can be obtained when one of the edges
of the straight corner moves with a constant positive speed and the other
either also with a constant positive speed or according to a certain law
x = f{t) insuring the absence of strong discontinuities. Summarizing
investigations of sections 5 and f, one can formulate the following
theorem:

Thecrem 3. Let the edges of a straight cormer move according to a law
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x;= fi(¢), i= 1,2, Then the x,, x, plane is cut by two mutually-ortho-
gonal straight linesy,, y, into four regions I to IV (Fig.2),so that the
following regime of motion prevails:

up =0, uy =0 0 =0, in region I

uy =gy (¥1, 1), uy =10 0=0+u +e in region 11
uy =0, ug = gy (%at) B =0y 4 uy |- ¢ in region ITI
uy =gy (23, 1), Uy = g (%2, 1) =04 u1+u:+¢ in region IV

This representation is true even for the case when for one if;(t) =
c¢; > 0. Then the respective boundary y; is a shock wave, proceeding with
constant speed: in the remaining cases y, is a line of weak discontinuity.
When shock waves are absent, Cyg=Cg=C3= 0.
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